Exploring GpG bases next to anticodon in tRNA subsets
نویسندگان
چکیده
Transfer RNA (tRNA) structure, modifications and functions are evolutionary and established in bacteria, archaea and eukaryotes. Typically the tRNA modifications are indispensable for its stability and are required for decoding the mRNA into amino acids for protein synthesis. A conserved methylation has been located on the anticodon loop specifically at the 37(th) position and it is next to the anticodon bases. This modification is called as m1G37 and it is catalyzed by tRNA (m(1)G37) methyltransferase (TrmD). It is deciphered that G37 positions occur on few additional amino acids specific tRNA subsets in bacteria. Furthermore, Archaea and Eukaryotes have more number of tRNA subsets which contains G37 position next to the anticodon and the G residue are located at different positions such as G36, G37, G38, 39, and G40. In eight bacterial species, G (guanosine) residues are presents at the 37(th) and 38(th) position except three tRNA subsets having G residues at 36(th) and 39(th) positions. Therefore we propose that m1G37 modification may be feasible at 36(th), 37(th), 38(th), 39(th) and 40(th) positions next to the anticodon of tRNAs. Collectively, methylation at G residues close to the anticodon may be possible at different positions and without restriction of anticodon 3(rd) base A, C, U or G.
منابع مشابه
Examining the Gm18 and m1G Modification Positions in tRNA Sequences
The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA m(1)G37 methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves...
متن کاملInfluence of Dielectric Constant on Codon-Anticodon pairing in mRNA and tRNA triplets by Theoretical Studies: Hartree-Fock and Density Functional Theory Calculations.
In this paper we have focused on the dielectric constant effect between various solvents with theoretical modelin the biochemical process. Thereby, AAA, UUU, AAG and UUC triplex sequences have been optimized inwater, methanol, ethanol and DMSO with proposed SCRF Model of theory. The solvation of biomolecules isimportant in molecular biology since numerous processes involve to interacting a prot...
متن کاملMolecular dynamics simulations of human tRNA UUU : the role of modified bases in mRNA recognition
Accuracy in translation of the genetic code into proteins depends upon correct tRNA–mRNA recognition in the context of the ribosome. In human tRNA UUU three modified bases are present in the anticodon stem–loop—2-methylthio-N6-threonylcarbamoyladenosine at position 37 (mstA37), 5-methoxycarbonylmethyl-2-thiouridine at position 34 (mcmsU34) and pseudouridine (c) at position 39—two of which, mstA...
متن کاملtRNA structure and evolution and standardization to the three nucleotide genetic code
Cloverleaf tRNA with a 75 nucleotide (nt) core is posited to have evolved from ligation of three 31 nt minihelices followed by symmetric internal deletions of 9 nt within ligated acceptor stems. Statistical tests strongly support the model. Although the tRNA anticodon loop and T loop are homologs, their U-turns have been treated as distinct motifs. An appropriate comparison, however, shows that...
متن کاملUnusual anticodon loop structure found in E.coli lysine tRNA
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013